
The Barriers to Overthrowing Internet Feudalism
Tai Liu
NYU-AD

tai.liu@nyu.edu

Zain Tariq
NYU-AD

zain.tariq@nyu.edu

Jay Chen
NYU-AD

jay.chen@nyu.edu

Barath Raghavan
ICSI / Nefeli Networks / USC

barath@icsi.berkeley.edu

ABSTRACT
Today’s Internet scarcely resembles the mythological image
of it as a fundamentally democratic system. Instead, users
are at the whims of a small number of providers who control
nearly everything about users’ experiences on the Internet.
In response, researchers and engineers have proposed, over
the past decade, many systems to re-democratize the Internet,
pushing control over data and systems back to the users. Yet
nearly all such projects have failed. In this paper we explore
why: what are the goals of such systems and what has caused
them to run aground?

1 INTRODUCTION
Five years ago, Bruce Schneier noticed something curious
about the state of the user-facing Internet [42]:

Some of us have pledged our allegiance to
Google: We have Gmail accounts, we use Google
Calendar and Google Docs, and we have Android
phones. Others have pledged allegiance to Ap-
ple: We have Macintosh laptops, iPhones, and
iPads; and we let iCloud automatically synchro-
nize and back up everything... Some of us have
pretty much abandoned e-mail altogether... for
Facebook.

He observed that our data, our communication tools, and,
increasingly, our hardware is controlled by five companies,
which he analogized to feudal lords. In pledging our alle-
giance, we get distinct benefits [42]:

We choose to do it because of the convenience, re-
dundancy, automation, and shareability. We like
it when we can access our e-mail anywhere, from
any computer. We like it when we can restore our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152454

contact lists after we’ve lost our phones. We want
our calendar entries to automatically appear on
all of our devices. These cloud storage sites do a
better job of backing up our photos and files than
we would manage by ourselves...

The de facto reality of the Internet of the 1990s and early
2000s matched its de jure architecture: a federated network
of many autonomous providers with little centralized control
of services or infrastructure. Today’s Internet, while governed
by many of the same protocols, scarcely resembles its past.

None of this is news to networking researchers and engi-
neers who, unsettled at the notion of becoming vassals to
powerful companies, have designed and built numerous sys-
tems that aim to upset this power balance and re-democratize
the Internet. Over the past decade many such systems have
been developed, and there has been increased interest in just
the last few years.1 While these diverse efforts do not have
a unified objective, they have largely aimed to overcome the
privacy, security, and reliability challenges of a feudal inter-
net. Yet, to date, nearly all of these efforts have failed. In this
paper, we seek to understand why.

What barriers remain to overthrowing the current structure
of the Internet? We begin by considering the benefits and
drawbacks of today’s architecture. We then coalesce the ob-
jectives of various projects to identify requisite properties and
fundamental components of a re-democratized Internet. We
also examine how existing efforts aim to satisfy these prop-
erties and the mechanisms used to do so. Finally, we discuss
what is missing both technically and otherwise, and suggest
directions for future research.

2 A FEUDAL INTERNET
What are the common sought-after features of a democratized
Internet, one that restores the structure of the 1980s or 1990s?
The discussion in this space has become confused, so we
begin by defining our terms.

Changes in the Internet’s structure have taken place along
two orthogonal axes over the past few decades, yet they are of-
ten conflated. The first axis concerns distribution—centralized
vs. distributed—and whether the physical resources being ac-
cessed for some service are located at a single machine (at

1The notion of building a re-decentralized Internet has become popular: it
was a central plot device in the TV show Silicon Valley, though their system
was made possible by a magical compression algorithm.

https://doi.org/10.1145/3152434.3152454

one extreme) or dispersed across many machines all over
the planet (at the other). The second axis concerns control—
democratic vs. feudal—and whether the authority over the
service and the machines providing a service is spread across
many individuals or organizations or held by a few.

The Internet of today is quite different from that of a few
decades past along both axes: it has gone from partially-
centralized and democratic to distributed and feudal.2 Our
aim is to move towards distributed and democratic: not to
undo the necessary trend towards wide distribution, but to
disperse control. Put another way, the scale-out design phi-
losophy that has served us well in the design of systems over
the past two decades must now be applied to the control of
systems as well [39].

2.1 Feudal Internet Features
Our primary focus is decentralizing administrative control
of various systems. Before we do so hastily, we believe it is
important to understand the reasons for today’s centralized
administrative control (which leads to a feudal Internet). Cen-
tralized systems are attractive to users due to:
Convenience. Compared to running one’s own service, cloud
services are always on, accessible, fast, secure, scalable,
sharable, and easy to setup, use, and maintain.
Homogeneity. Most users are on the same set of platforms
so users are familiar with how to use them, and have a rea-
sonable understanding about how they work. Homogeneity
also produces important network effects, particularly in social
applications.
Cost. Cloud services are cheap; most services are offered for
free to end users, at least initially.

These considerable benefits are what make cloud services so
popular and difficult for users to escape from despite their
negative consequences to user’s freedom and privacy. Even-
tually, sufficient users will have bought into the platform
that inertia (e.g., losing/migrating all personal data, network
effects) makes the cost of opting out or switching services
impractical. Once users are effectively locked in, they are
easily monetized.

However, centralized systems are attractive not only to
users but also to systems designers and operators because of:
Performance. It has proved easier to scale Internet services
when they are under centralized administrative control. New
protocols and architectures, hardware and software—all of
which can be designed in concert to improve performance—
can be rolled out systematically. This has proved to be the
case in datacenter design, where a single organization can
tailor its systems to the needs of the services it runs.

2It may seem strange to describe the Internet of the past as partially cen-
tralized, but numerous services were indeed centralized. Consider the way
the Web and FTP services were run in the 1990s when the average person
didn’t and couldn’t afford to operate an always-on server. These servers
were generally hosted by ISPs (centralized), of which there were hundreds to
thousands (semi-democratized).

Security. Centralized authority simplifies security policies:
instead of data coming from other (distributed) nodes that are
assumed to be untrustworthy, other nodes can be assumed
to be cooperative and trustworthy, making the design of dis-
tributed algorithms and systems simpler. In addition, it is
easier to uniformly and rapidly secure systems under central-
ized command.
Financing. The cost of aggregated infrastructure can benefit
from economies of scale, which potentially lowers the cost of
providing a service. Today’s financial incentives encourage
the aggregation and monetization of users and their data.

2.2 Goals
A democratized Internet would need to provide the benefits
that users have come to expect of today’s Internet: the conve-
nience of not having to maintain one’s own infrastructure, the
homogeneity of use across many devices and from different
locations, and the low costs of both of these. On the other
hand, there is little need to meet the needs of researchers and
engineers who design and build such infrastructure—they
(we) are responsible for designing systems and we can choose
to build alternative systems. However, financial constraints
are a key limiting factor for democratized Internet service
architectures, something we return to later.

3 RE-DEMOCRATIZING THE INTERNET
A slew of recent systems have been developed in academia, in-
dustry, and as open source projects in attempts to democratize
key Internet services [2, 4, 6, 7, 14, 16, 18, 18, 22, 23, 27, 27–
30, 34, 35, 40, 41, 43, 44, 47, 50, 52, 54]. In Table 1, we
roughly categorize these recent systems by the central prob-
lem(s) they aim to solve. This list is by no means exhaustive,
but does represent a set of relatively well-known projects.
There is some overlap, but the core problems they tackle
fall into four categories: naming, group communication, data
storage, and serverless web applications. In this section, we
describe how recent efforts approach these problems, how
they compare with past systems, and what pieces are missing.

3.1 Name Registration
Three mechanisms are commonly used to represent user iden-
tities on the Internet: public keys, personal information, and
pseudonyms. Public-key-based identities consisting of opaque
strings help preserve privacy and are considered relatively se-
cure; however, such identities have faced usability barriers for
as long as public-key cryptography has existed. Since none
of these three basic mechanisms are simultaneously usable,
secure, and privacy preserving by themselves, a name (or
pseudonym) is combined with a public-key to yield a secure,
human-meaningful identity. Centralized public key infrastruc-
tures (PKIs) rely on trusted certification authorities (CAs)
or a Web of Trust (WoT) to issue and authenticate digital
certificates. Existing PKIs relying on CAs or a WoT suffer
from well-known security, trust, and revocation weaknesses
(e.g., centralized administrative control, CA compromises,

Decentralization Problem Recent Projects
Naming Namecoin, Emercoin, Blockstack
Group Communication
(e.g., public messaging and social networking)

Matrix, Riot, Ring, Nextcloud, GNU social, Mastodon, Friendica, Identi.ca

Data storage IPFS, Blockstack, Maidsafe, Secure-scuttlebutt, Nextcloud, Sia, Storj,
Swarm, Filecoin

Web applications Beaker, ZeroNet, Freedom.js
Table 1: Decentralization problems and examples of recent projects

WoT Sybil attacks, etc.). The literature is replete with re-
search on identity management, naming systems, PKIs and
the fundamental tradeoffs that exist [17, 21, 24, 46, 53].

Motivated by these problems and by the rise of Bitcoin [33],
several recent decentralized alternatives to centralized PKIs
have been developed that leverage advances in blockchain
technology, including: Namecoin [34], Emercoin [14], and
Blockstack [2, 3]. By providing cryptographically auditable,
append-only ledgers, blockchains allow users to publicly reg-
ister a name with associated metadata in a decentralized man-
ner. Compared to centralized systems, blockchains essentially
trade scalability and performance for global consensus and
security. These blockchain-based naming schemes manage to
resolve Zooko’s Triangle [25] by providing, simultaneously,
human-meaningful, secure, and decentralized names. How-
ever, blockchains suffer from some well-known problems,
including: the 51% attack, limits on data storage, wasteful
mining computation, the endless ledger problem, and many
others (see [2, 31]). Since name registration does not require
high bandwidth or large amounts of data to be stored, those
two weaknesses are mitigated in this use case, but the other
challenges remain.

3.2 Group Communication
For the purposes of our discussion, we consider both group
messaging and online social networking as group communi-
cation problems since they are roughly analogous and share
several requirements. Public messaging or publicly-accessible
social networks (e.g., Reddit, Twitter) exacerbate scalability,
security, and privacy challenges.

Group communication and sharing platforms have been
around for decades. Usenet, one of the oldest messaging
platforms on the Internet, offered a decentralized (federated),
distributed online forum with some privacy. No one other
than a user’s service provider knew the user’s real identity
and there was no single authoritative entity that owned
the network or controlled its content. Usenet eventually
collapsed under its own traffic load and suffered from issues
relating to the storage of undesirable content.3 The shift
toward centralized systems managed to resolve performance
and abuse-related problems, but have created a new set of
challenges. In addition to the features from Section 2.1,
messaging and social networking systems should provide the
following communication-specific features:

3This relates to an ethical debate that we do not explore in this paper.

Connectedness. Users should be able to communicate with
others in the face of node failures, node attrition, loss of
communication channels, etc.
Abuse Prevention. Platforms should have mechanisms that
handle abuse, however abuse is defined (e.g., spam, hate
speech, brigading, etc.). This property becomes more salient
as the scope increases and becomes more public.
Privacy. No identifying information about users should be
revealed to an unauthorized entity.

Today’s most popular messaging and online social net-
works (OSN) can achieve the first two properties due to their
centralized infrastructural and administrative nature. How-
ever, the connectedness of centralized platforms depends com-
pletely on the prerogative of platform operators. For example,
if it is no longer profitable to provide service to a user or
they “misbehave”, access to the platform can be unequivo-
cally revoked and personal data rendered inaccessible. The
norms for “good behavior” and the definitions of abuse are
dictated by platform operators or their delegates. One way
messaging and OSNs cope with abuse is through moderation.
However, moderation is often in direct tension with freedom
of expression, and can be influenced by governments, other
powerful organizations, or individuals in positions of author-
ity. Finally, it is well-known that due to the profit motive of
these platforms, service is provided in exchange for user’s
private data and attention.

Centralized platforms have made some progress keeping
user data private from other users, but they have simultane-
ously continued to violate user privacy as their monetization
strategies grow more sophisticated. For example, user data
today is mined for social profiling, monetized directly (e.g.,
via advertising), or sold to third-party organizations.

These numerous challenges have sparked many efforts to
consider democratized communication platforms while at-
tempting to maintain a comparable level of service. We cate-
gorize these systems into two network models: socially-aware
P2P and federated.

Socially-aware P2P Systems
Academic systems like PrPl [45], Persona [5], Lockr [49]
and OTR (Off The Record messaging) [9] have mainly fo-
cused on protecting user privacy. Rather than uploading data
to geographically distributed servers as in Usenet—which
also comes at a cost of service availability as servers often

face huge number of connections and temporarily refuse new
connections—PrPl [45] allows users to retain ownership over
their data by storing it on home servers or in encrypted form
on public storage providers. PrPl [45] lets users define access
levels, i.e, some users (trusted nodes or “friends”) are allowed
to access private data while others only have access to public
data. Persona [5] and Lockr [49] provide similar functionality,
but take this further by allowing users to define relationships
with other users and ensuring that relationships are not ex-
ploited. OTR [9] introduces the concepts of repudiability and
forgeability to the discussion.

Since privacy is the main focus of these systems, they do
not emphasize high service availability or controlling abuse.
In PrPl, trusted users can obtain certificates to access the data
directly from the storage, without the need to go through “But-
lers” to maintain accessibility. Persona [5] claims to provide a
relatively high level of service availability, but data and meta-
data are not coupled together, which can harm availability
in the event of node failures. Lockr [49] and OTR [9] are
designed to maintain user ownership and privacy of data at
the cost of service availability.

We call these systems socially-aware peer-to-peer (P2P)
systems because they require users to define social trust rela-
tionships with other users. Compared with peer-to-peer (P2P)
systems, centralized systems have the performance, security,
and financial benefits described in Section 2.1. Socially-aware
P2P networks improve some of the security and privacy draw-
backs of traditional P2P networks since users are communi-
cating with other users that they trust. However, this comes at
a price of reduced availability since nodes accept connections
only from socially-trusted peers. Furthermore, establishing
these networks can be tedious for the user as it can be chal-
lenging to quantify social index value of the relationships
between nodes.

Federated Systems
Many recent non-academic projects that decentralize group
communication place more emphasis on freedom rather than
solely focusing on privacy. These applications are nearly all
built on a federated model.

Riot [41] is a chat application which is based on Matrix, a
federated network protocol. Matrix [30] provides high avail-
ability by replicating data over the entire network and en-
sures privacy by using end-to-end encryption techniques like
the double ratchet algorithm [37]. Although messages are
encrypted, metadata is still accessible and readable by the Ma-
trix server that stores it, which slightly compromises the level
of privacy by revealing the identities of the participants of an
exchange. Unlike centrally administered systems, every ap-
plication built on Matrix can define its own abuse moderation
policies and implement them on the application level.

GNU Social [18] is another federation-based social net-
working application that relies on OStatus [36] for federa-
tion. OStatus allows real-time exchange of messages between
nodes, but there are no intrinsic privacy mechanisms; privacy
must be implemented at the application level. Mastodon [29]

also runs on OStatus [36] and provides similar functionality
to GNU Social, but also allows federations to define their own
rules on abuse (e.g., racism, sexism, xenophobia, violence,
gender discrimination, etc.). Unlike Matrix [30], OStatus-
based applications are bottlenecked by single servers that can
cause entire instances to be inaccessible if they fail.

Identi.ca [23] and Friendi.ca [16] are based on the popular
federated stream server, pump.io [38]. Pump.io [38] makes
it easy to disseminate information in the network, and uses
OAuth to restrict unauthorized access to private data. Differ-
ent servers are capable of providing their own functionalities.
Friendi.ca [16] provides its own application-level privacy
measures through private one-to-one and group messaging,
expiring old data and giving users ownership of their data.

3.3 Data storage
Storing data is a fundamental function of many Internet ser-
vices. Although messaging systems also technically store
data, for the purposes of this discussion we consider systems
that primarily focus on storage. Compared with centralized
storage systems, decentralized systems potentially provide
cheaper storage services (since users already have devices),
and are potentially resistant to censorship and unauthorized
access. However, despite these advantages, scaling decentral-
ized storage systems is hard and such systems often perform
poorly across all dimensions.

There is a large amount of literature, mostly from the era
in which peer-to-peer systems were popular, on distributed
storage systems [1, 8, 10, 12, 20, 26, 51]. To improve perfor-
mance, these storage systems typically maintain replicas and
make decisions about synchronous or asynchronous replica-
tion, numbers of maintained replicas, mechanisms of replica
production, locations of replica storage, redundancy monitor-
ing, and repair strategies to prevent data loss. These design
decisions involve inherent trade-offs among durability, avail-
ability, consistency, and performance of decentralized storage.
All of these systems focus on physically distributed rather
than administratively democratized storage and do not ac-
count for malicious nodes.

In contrast, blockchain mechanisms are completely decen-
tralized; many storage systems build on top of blockchains
in some way. Table 2 summarizes some recent systems that
provide decentralized storage. We observe that, with the ex-
ception of IPFS and MaidSafe, many of these decentralized
storage systems use blockchains to publicly record contracts
and to facilitate payments. Here a contract is an object that
defines a service agreement between two parties: storage
providers and consumers. The exact contents of this agree-
ment vary from system to system, but, generally, it contains
information about storage and retrieval (e.g., how much data
should be stored, how often the data should be retrieved), pric-
ing, and proof-of-storage requirements. This use case, like in
naming, uses blockchains for its intended purpose (as a slow,
but consistent and verifiable public ledger) while minimizing
any impacts of its weaknesses.

Blockchain Usage Incentive Scheme
IPFS None Bitswap Ledgers

MaidSafe None
Proof-of-resource
Distributed transaction

Sia Blockchain-based
contract Proof-of-storage

Storj Facilitate payments
(storjcoin) Proof-of-retrievability

Swarm

Ethereum blockchain for
domain name resolution,
payments, and content
availability insurance

Proof-of-storage:
SWEAR

Filecoin Facilitate payments
(filecoin)

Proof-of-replication
Proof-of-spacetime
Proof-of-work

Blockstack
Bind domain name
public key and zone
file hash

N/A

Table 2: Comparison of Surveyed Storage Systems.

In P2P storage systems nodes must contribute storage and
bandwidth and cooperate with each other to store and serve
data. However, selfish nodes can interfere with this sharing
model if they do not have incentives to behave correctly,
since sharing consumes their own resources and degrades
their own performance. To address this problem, systems
such as Filecoin [27], Sia [50], MaidSafe [28], Storj [52], and
Swarm [47] use blockchains to build-in incentives for data
storage. Essentially, nodes that wish to store and retrieve data
pay other nodes for storing and serving data for them. Nodes
are therefore incentivized to contribute storage and bandwidth
and to cooperate (and compete) with each other to make
the storage system function as a whole. Blockchain mecha-
nisms such as proof-of-work have inspired many variations
of storage-focused proof-of-work mechanisms such as: proof-
of-storage, proof-of-retrievability, proof-of-replication, and
proof-of-spacetime [27, 47, 50, 52]. Proof-of-Replication, for
example, allows a node to convince others that they are stor-
ing exactly the same number of copies as they have claimed
instead of creating multiple identities, and storing data just
once (Sybil Attacks), of fetching from others (Outsourcing At-
tacks), or of generating on-demand (Generation Attacks) [27].
These mechanisms are designed to incentivize nodes to amass
as much storage and bandwidth as possible, and to stay on-
line as long as possible. In our table, the only exception is
Blockstack, which does not focus on decentralizing storage;
its users are to use the data store of their choice, such as from
a cloud provider.

3.4 Web Applications
Today, the web service platforms owned by a few large com-
panies, such as Google, Amazon, and Microsoft, provide
most of the necessary components for the web (storage, data-
base, computation, content delivery, management, etc.) to web
applications and guarantee high service quality, e.g., Ama-
zon Elastic Compute Cloud (Amazon EC2) promises 99.95%

availability for each Amazon EC2 Region [13]. Many applica-
tion developers decide to directly host their web applications
on these existing mature web service platforms instead of
devoting significant time and money to develop their own.
Consequently, many web services are further bound to a few
large web service providers and thus censoring of or censor-
ship by the service providers is sufficient to disrupt the web
applications running on them.

Recent decentralized systems replace the traditional client-
server web architecture with a novel browser-based web ar-
chitecture in which decentralized applications are no longer
hosted by specific servers and are mainly run on the client.
This browser-based web architecture typically leverages ex-
isting technologies such as HTML5, and combines them with
decentralized name registration, communication, and storage
mechanisms to allow users to easily create, modify, and share
hostless web applications.

Freedom.js [43], for example, uses a browser-based web
architecture where a web application, including its back-end
logic, runs entirely in a web browser. Three types of APIs, the
identity, storage, and transport, are provided to application
developers. It leverages existing techniques, e.g., WebRTC is
used to establish a direct peer-to-peer connection to transmit
data, and a reliable DHT can be selected to store data glob-
ally. ZeroNet [54] is a decentralized web platform in which
web applications are seeded and served by visitors via the
BitTorrent protocol. When a new web application is created
by the application developer, the application developer gets a
public key pair. The public key is the new site address which
can be looked up on trackers or DHTs, and every file of and
update about the web application can be securely verified by
verifying the corresponding signature. The public key is also
a standard Bitcoin address for accepting donations and pay-
ments directly to the web application. Beaker [6] is a tailored
web browser enabling users to create and host websites di-
rectly from browsers. Like ZeroNet [54], resources in Beaker
are served and distributed in a peer-to-peer network. What dis-
tinguishes Beaker is that, motivated by Git, it explicitly allows
forking and merging web applications, advocating openness
at the code level.

4 INFRASTRUCTURE FEASIBILITY
Infrastructure is often overlooked by designers of the sys-
tems we have considered in this paper; it is assumed that the
resources to run democratized services exist. Thus a basic
unanswered question is: even if an ideal democratized Internet
service architecture were to be developed, would the capacity
exist for it to operate at service levels comparable to today?

Here we perform a back of the envelope calculation. We
compare the resources of today’s cloud infrastructure with
the currently-unproductive capacity of distributed infrastruc-
ture (e.g., personal devices). We focus on three resources: 1)
bandwidth, 2) compute, and 3) storage. For simplicity, we
focus on a specific provider’s resources, Google, and then
scale up to estimate global capacity. No public data exists on

Cloud Infrastructure User Devices
Bandwidth 200 Tbps 5000 Tbps

Cores 400 M 500 M
Storage 80 EB 210 EB

Table 3: Estimated capacity of global cloud infrastruc-
ture and unused user resources (server-equivalent cores).

Google’s network or compute capacity. Various reports from
a few years ago [19, 32] estimate that Google has about 1
million servers and 10 EB of storage. We might extrapolate
that today Google has about 100 million cores and 20 EB
of storage. One recent estimate [48], puts the current rate
of Internet traffic at a little over 200 Tbps in 2016. Since
Google estimates that it handles one quarter of the Internet’s
traffic [15], we scale up these figures by a factor of 4, yielding
an aggregate estimate across all cloud providers of 200 Tbps
of bandwidth, 400 million cores, and 80 EB of storage.

Does there exist enough unproductive capacity among user
devices to meet this resource demand? There are roughly
2 billion personal computers, 2 billion smartphones, and 1
billion tablets in use worldwide [11]. We assume that per-
sonal computers have an average of 2 unutilized cores and
100 GB of free storage, smartphones have 1 unutilized core
and negligible free storage, and tablets have 1 unutilized core
and 10 GB of free storage. However, mobile devices such
as smartphones and tablets cannot be relied upon to do com-
pute given battery constraints. Thus we estimate that only
storage—about 210 EB—is available across all devices. For
compute, we take the 4 billion cores available across personal
computers and reduce their estimated capacity by a factor
of 8 to account for weaker processors (versus server CPUs)
and to allow for power management, yielding 500 million
server-equivalent cores. Finally, we must estimate the band-
width available across these devices. Assuming devices are
connected to the Internet using a slow broadband connection
that has only 1 Mbps upstream bandwidth, in the case of
personal computers, and slow 3G connections that also have
1 Mbps upstream bandwidth for mobile devices, this yields
5000 Tbps of bandwidth. We summarize these estimates in
Table 3. Roughly speaking, there appears to be sufficient
capacity among existing devices.

5 DISCUSSION
Infrastructure feasibility is only a preliminary sanity check
that democratizing Internet services is possible. Clearly, there
are many difficult challenges in terms of performance and
robustness of decentralized approaches. However, we believe
that blockchains, like bittorrent and DHTs before them, are
key components of recent democratized services, and are a
promising avenue of research that we should work on. Improv-
ing blockchains and leveraging its properties for applications
that do not mind their weaknesses are important avenues for
future work. However, we also believe that we need work that
goes beyond blockchains to overthrow Internet feudalism.

5.1 Easy Problems
Studying the performance and security of blockchain-
based systems: hacker communities dedicated to such efforts
have made headway in developing many blockchain-based
systems, but have typically neglected performance evaluation
and a thorough evaluation of their security models under new
requirements (e.g., when used to back a storage system).
Doing what systems researchers do best: design, build, and
evaluate new systems and primitives for building performant
decentralized systems.
Eliminating single points of failure in federated ap-
proaches: federated approaches are an ideal stepping stone
from today’s feudal model, in that they allow explicit control
of the granularity of a domain. However many of these sys-
tems have not been architected with canonical systems goals
in mind, such as fault tolerance.

5.2 Moderate Problems
Overcoming the mismatch between research/engineer ob-
jectives and user needs: systems often solve hard or exciting
problems when users’ needs and desires are more mundane
(e.g., getting systems researchers to attend to usability of com-
plex systems).
Bridging the gap between the research community and
the hacker community: many efforts, such as those in feder-
ated group communication systems, do not provide significant
privacy features, and often do not leverage the latest thinking
from the academic network security and privacy community.
We can build mechanisms or toolkits that can be plugged in
by the hacker community in their projects.
Grappling with infrastructure quality vs. quantity: as we
discuss above, there exists more than enough unproductive
capacity among user devices worldwide. However, the qual-
ity of this infrastructure is much poorer than what a typical
datacenter provides. As such, systems must be designed to
cope with the intermittency, higher failure rates, and variable
performance of user-device-based infrastructure.

5.3 Hard Problems
Incentivizing (financially or otherwise) development of
democratized Internet systems: significant engineering
hours go into building Google, Facebook, etc., so building
alternatives may require similar engineering efforts.
Decoupling authority from infrastructure: how can sys-
tems be designed that are not rigid about the infrastructure
they run upon while still retaining user control? Technical
approaches may include “guerrilla” tactics such as running
encrypted services on the cloud.
Preventing the re-emergence of feudalism: while there is a
long road to re-democratizing the Internet in the first place,
systems must prevent backsliding to the feudal model. Unfor-
tunately, like the other problems in this class, this may not be
an entirely technical problem as centralization is frequently
driven by economies of scale.

REFERENCES
[1] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie

Chaiken, John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer,
and Roger P Wattenhofer. 2002. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. ACM SIGOPS
Operating Systems Review 36, SI (2002), 1–14.

[2] Muneeb Ali, Jude C Nelson, Ryan Shea, and Michael J Freedman.
2016. Blockstack: A Global Naming and Storage System Secured by
Blockchains.. In USENIX Annual Technical Conference. 181–194.

[3] Muneeb Ali, Ryan Shea, Jude Nelson, and Michael J Freedman. 2017.
Blockstack: A New Decentralized Internet. (2017).

[4] An encrypted IPv6 network using public-key cryptography for address
allocation and a distributed hash table for routing. 2017. https://github.
com/cjdelisle/cjdns.

[5] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and
Daniel Starin. 2009. Persona: an online social network with user-
defined privacy. In ACM SIGCOMM Computer Communication Review,
Vol. 39. ACM, 135–146.

[6] Beaker: A peer-to-peer Web browser. 2017. https://github.com/
beakerbrowser/beaker.

[7] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system.
arXiv preprint arXiv:1407.3561 (2014).

[8] Ranjita Bhagwan, Kiran Tati, Yuchung Cheng, Stefan Savage, and
Geoffrey M Voelker. 2004. Total Recall: System Support for Automated
Availability Management.. In Proceedings of NSDI.

[9] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record
communication, or, why not to use PGP. In Proceedings of the 2004
ACM workshop on Privacy in the electronic society. ACM, 77–84.

[10] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim
Weatherspoon, M Frans Kaashoek, John Kubiatowicz, and Robert Mor-
ris. 2006. Efficient Replica Maintenance for Distributed Storage Sys-
tems.. In NSDI, Vol. 6. 4–4.

[11] Consumer Electronics | Statista. 2017. https://www.statista.com/
markets/418/topic/485/consumer-electronics/.

[12] Peter Druschel and Antony Rowstron. 2001. PAST: A large-scale, per-
sistent peer-to-peer storage utility. In Hot Topics in Operating Systems,
2001. Proceedings of the Eighth Workshop on. IEEE, 75–80.

[13] Elastic Compute Cloud (EC2). 2017. https://aws.amazon.com/ec2/
?nc2=h_m1.

[14] Emercoin - Distributed blockchain services for business and per-
sonal use. 2015. https://emercoin.com/2015-01-15-Emercoin_Peering_
Agreement_with_OpenNIC.

[15] Blair Hanley Frank. 2017. Google’s Espresso network-
ing tech takes SD-WAN to internet scale. http:
//www.networkworld.com/article/3187589/cloud-computing/
googles-espresso-networking-tech-takes-sd-wan-to-internet-scale.
html.

[16] friendica - A Decentralized Social Network. 2017. http://friendi.ca/.
[17] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi Sarolahti, and

Scott Shenker. 2011. Naming in content-oriented architectures. In
Proceedings of the ACM SIGCOMM workshop on Information-centric
networking. ACM, 1–6.

[18] GNU Social. 2017. https://gnu.io/social/.
[19] Google’s Datacenters on Punch Cards. 2017. https://what-if.xkcd.com/

63/.
[20] Andreas Haeberlen, Alan Mislove, and Peter Druschel. 2005. Glacier:

Highly durable, decentralized storage despite massive correlated fail-
ures. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association,
143–158.

[21] Seungyeop Han, Vincent Liu, Qifan Pu, Simon Peter, Thomas Anderson,
Arvind Krishnamurthy, and David Wetherall. 2013. Expressive privacy
control with pseudonyms. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 291–302.

[22] Hyperboria. 2017. https://hyperboria.net/.
[23] Identi.ca. 2017. https://identi.ca/.

[24] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard. 2009. Networking named
content. In Proceedings of the 5th international conference on Emerging
networking experiments and technologies. ACM, 1–12.

[25] Dan Kaminsky. 2011. Spelunking the Triangle: Exploring Aaron
Swartz’s Take On Zooko’s Triangle. https://dankaminsky.com/2011/
01/13/spelunk-tri/.

[26] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, et al. 2000. Oceanstore: An archi-
tecture for global-scale persistent storage. ACM Sigplan Notices 35, 11
(2000), 190–201.

[27] Protocol Labs. 2017. Filecoin: A Decentralized Storage Network.
https://filecoin.io/filecoin.pdf.

[28] MaidSafe - The New Decentralized Internet. 2017. https://maidsafe.
net/.

[29] Mastodon: A GNU Social-compatible microblogging server. 2017.
https://github.com/tootsuite/mastodon.

[30] Matrix.org. 2017. http://matrix.org/.
[31] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.

2014. Permacoin: Repurposing bitcoin work for data preservation. In
Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 475–490.

[32] Rich Miller. 2011. Report: Google Uses About 900,000 Servers | Data
Center Knowledge. http://www.datacenterknowledge.com/archives/
2011/08/01/report-google-uses-about-900000-servers/.

[33] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-
tem.

[34] Namecoin. 2017. https://namecoin.org/.
[35] Nextcloud. 2017. https://nextcloud.com/.
[36] Ostatus Community Group. 2017. https://www.w3.org/community/

ostatus/wiki/Main_Page.
[37] Trevor Perrin and Moxie Marlinspike. 2016. The Double Ratchet

Algorithm. GitHub wiki (2016).
[38] pump.io. 2017. http://pump.io/.
[39] Barath Raghavan. 2015. Abstraction, indirection, and Sevareid’s Law:

Towards benign computing. In Proceedings of LIMITS.
[40] Ring. 2017. https://ring.cx/en/news.
[41] Riot - open team collaboration. 2017. https://about.riot.im/.
[42] Bruce Schneier. 2012. When It Comes to Security, We’re Back to

Feudalism - Schneier on Security. https://www.schneier.com/essays/
archives/2012/11/when_it_comes_to_sec.html.

[43] William Scott, Raymond Cheng, Arvind Krishnamurthy, and Thomas
Anderson. 2016. freedom.js: an Architecture for Serverless Web Appli-
cations. (2016).

[44] Secure scuttlebutt: A database of unforgeable append-only feeds,
optimized for efficient replication for peer to peer protocols. 2017.
https://github.com/ssbc/secure-scuttlebutt.

[45] Seok-Won Seong, Jiwon Seo, Matthew Nasielski, Debangsu Sengupta,
Sudheendra Hangal, Seng Keat Teh, Ruven Chu, Ben Dodson, and
Monica S Lam. 2010. PrPl: a decentralized social networking infras-
tructure. In Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond. ACM, 8.

[46] Diana Smetters and Van Jacobson. 2009. Securing network content.
Technical Report. Technical report, PARC.

[47] Swarm. 2017. http://swarm-guide.readthedocs.io/en/latest/index.html.
[48] The Zettabyte Era: Trends and Analysis. 2017. http:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.html.

[49] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman.
2009. Lockr: better privacy for social networks. In Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 169–180.

[50] David Vorick and Luke Champine. 2014. Sia: Simple Decentralized
Storage. https://www.sia.tech/whitepaper.pdf.

[51] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. 2006. Ceph: A scalable, high-performance distributed

https://github.com/cjdelisle/cjdns
https://github.com/cjdelisle/cjdns
https://github.com/beakerbrowser/beaker
https://github.com/beakerbrowser/beaker
https://www.statista.com/markets/418/topic/485/consumer-electronics/
https://www.statista.com/markets/418/topic/485/consumer-electronics/
https://aws.amazon.com/ec2/?nc2=h_m1
https://aws.amazon.com/ec2/?nc2=h_m1
https://emercoin.com/2015-01-15-Emercoin_Peering_Agreement_with_OpenNIC
https://emercoin.com/2015-01-15-Emercoin_Peering_Agreement_with_OpenNIC
http://www.networkworld.com/article/3187589/cloud-computing/googles-espresso-networking-tech-takes-sd-wan-to-internet-scale.html
http://www.networkworld.com/article/3187589/cloud-computing/googles-espresso-networking-tech-takes-sd-wan-to-internet-scale.html
http://www.networkworld.com/article/3187589/cloud-computing/googles-espresso-networking-tech-takes-sd-wan-to-internet-scale.html
http://www.networkworld.com/article/3187589/cloud-computing/googles-espresso-networking-tech-takes-sd-wan-to-internet-scale.html
http://friendi.ca/
https://gnu.io/social/
https://what-if.xkcd.com/63/
https://what-if.xkcd.com/63/
https://hyperboria.net/
https://identi.ca/
https://dankaminsky.com/2011/01/13/spelunk-tri/
https://dankaminsky.com/2011/01/13/spelunk-tri/
https://filecoin.io/filecoin.pdf
https://maidsafe.net/
https://maidsafe.net/
https://github.com/tootsuite/mastodon
http://matrix.org/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
https://namecoin.org/
https://nextcloud.com/
https://www.w3.org/community/ostatus/wiki/Main_Page
https://www.w3.org/community/ostatus/wiki/Main_Page
http://pump.io/
https://ring.cx/en/news
https://about.riot.im/
https://www.schneier.com/essays/archives/2012/11/when_it_comes_to_sec.html
https://www.schneier.com/essays/archives/2012/11/when_it_comes_to_sec.html
https://github.com/ssbc/secure-scuttlebutt
http://swarm-guide.readthedocs.io/en/latest/index.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.sia.tech/whitepaper.pdf

file system. In Proceedings of the 7th symposium on Operating systems
design and implementation. USENIX Association, 307–320.

[52] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, James Prestwich,
Gordon Hall, Patrick Gerbes, Philip Hutchins, Chris Pollard, and Vitalik
Buterin. 2016. Storj a peer-to-peer cloud storage network. https:
//storj.io/storj.pdf.

[53] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos
Fotiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Kat-
saros, and George C Polyzos. 2014. A survey of information-centric
networking research. IEEE Communications Surveys & Tutorials 16, 2
(2014), 1024–1049.

[54] ZeroNet: Decentralized websites using Bitcoin crypto and the BitTor-
rent network. 2017. https://zeronet.io/.

https://storj.io/storj.pdf
https://storj.io/storj.pdf
https://zeronet.io/

	Abstract
	1 Introduction
	2 A Feudal Internet
	2.1 Feudal Internet Features
	2.2 Goals

	3 Re-Democratizing the Internet
	3.1 Name Registration
	3.2 Group Communication
	3.3 Data storage
	3.4 Web Applications

	4 Infrastructure Feasibility
	5 Discussion
	5.1 Easy Problems
	5.2 Moderate Problems
	5.3 Hard Problems

	References

