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Abstract
Forgetting, losing, or corrupting data is almost universally
considered harmful in computer science and blasphemous in
database and file systems. Typically, loss of data is a con-
sequence of unmanageable or unexpected lower layer defi-
ciencies that the user process must be protected from through
multiple layers of storage abstractions and redundancies. We
argue that forgetfulness can be a resource for system design
and that, like durability, security or integrity, can be used to
achieve uncommon, but potentially important goals such as
privacy, plausible deniability, and the right to be forgotten.
We define the key properties of forgetfulness and draw in-
spiration from human memory. We develop a data structure,
the forgit, that can be used to store images, audio files, videos
or numerical data and eventually forget. Forgits are a natural
data store for a multitude of today’s cloud-based applica-
tions and we discuss their use, effectiveness, and limitations
in this paper.

Categories and Subject Descriptors E.1 [Data]: Data
Structures

Keywords memory loss; forgetful data structures; ephemeral
storage

1. Introduction
The notion of loss frequently appears as a problem to be
solved for reliable storage and communication. While im-
provements in hardware, protocols, and algorithms have over
the past several decades made datacenter losses rare and gen-
erally more tolerable events, we argue in this paper that there
are potential benefits to loosening our intransigent refusal to
accept loss. The notion of embracing loss is actually less
contentious than it first appears; loss is already widely used
to positive effect in the form of soft-state, caching, and lossy
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compression. The key observation in all these cases being
that if loss has predictable properties, then it may be har-
nessed for specific purposes.

We define forgetfulness as having four key properties:
passive loss, graceful degradation, no hi-low storage and
negligible preprocessing overhead (Section 1.1). We begin
by describing two motivating applications for a forgetful
data store with these properties.
Ephemeral Media Storage & Sharing. Popular ephemeral
content-sharing apps like Snapchat [26], Wickr [31] and
Silent Circle [25], are designed to protect privacy by delet-
ing content after a finite time period. They allow users to
communicate more freely with the knowledge that messages
will eventually be forgotten [24]. Ephemeral apps challenge
the assumption that data persistence is the right default and,
by doing so, address (i) a market need for private and tran-
sient communications, (ii) a societal need to forget and move
on [16] as codified in laws such as the EU’s ‘right to be
forgotten’ [15], and (iii) a corporate need for plausible de-
niability when subpoenaed for past records or subjected to
government surveillance.
Compressed Archival Records. Our thirst for recording
the minutiae of everyday life is leading to an enormous data
glut that is overwhelming our datacenters and cloud stores.
While cheap, storage is not free and the cost of storing data
is quickly surpassing the economic benefit of archiving. A
stop-gap measure is to compress such archival data. Once
storage resources are exhausted, data managers then run an
active delete thread with the worry of potentially irreversibly
deleting important data. Figure 1(a) shows how we typically
order our data for deletion. With forgetful data stores more
recent data is preserved at full fidelity and older data at lower
fidelity. Data such as time-series sensor readings, stock price
trends, etc. allow transform-based compression techniques
to re-encode data into most significant to least significant
components allowing forgetful data stores to gradually for-
get the data by dropping least significant components first.

Forgetful data stores can provide a stronger sense of pri-
vacy for users who worry about their data being preserved
indefinitely without their consent [29]. Redesigning the store
so that it passively loses data allows users to be free from
depending on an active deletion effort. Moreover, gradually
losing data allows users to observe and accept impending
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Figure 1. (a) Forgetful model of loss compared with lossy compression and deletion/eviction. (b) Illustration showing how
forgetting archival data gradually still allows limited computations to be performed even with partially forgotten data. Different
features (e.g. precision, trends, etc.) may be preserved or discarded depending on application requirements.

losses compared to abrupt deletions. A system that gradu-
ally blurs past data is more compatible with human intuition
of forgetting older memories until they are completely gone.

1.1 Defining Forgetfulness
Forgetting is the passive and gradual process of losing data
fidelity until the data eventually disappears. In conventional
storage, data either exists in a memory location or does not
exist. This data can be explicitly compressed with a lossy
data compression algorithm resulting in some loss of fidelity.
Data can also be stored with varying levels of fidelity: for
example geo-spatial images are stored in varying resolutions
and sizes to support smooth zooming; document thumbnails
are low fidelity images of documents that allow users to
visually identify documents during searches. In both of these
cases, the active processing that results in loss of fidelity is
not, by our definition, forgetting. Forgetting is when data
is initially stored in its highest precision representation and
gradually, as new data is pushed into the store, the older data
loses its precision until it is completely overwritten.1

The defining properties of a forgetful data store are:
1. Passive fidelity loss: A forgetful data store does not ac-

tively scan its data and selectively drop fragments. In-
stead, loss occurs naturally as a side-effect of pushing
more data into a finite data store.

2. Graceful degradation: Data stored in forgetful data stores
exists in one of F possible states of varying degrees
of fidelity. Thus, as the store starts to forget data, it
incrementally loses fragments of the data starting with
least significant fragments to most significant fragment
until the data is completely lost.

1 Tangential to the concept of forgetting is data corruption. Several mecha-
nisms such as cyclic redundancy checks, parity bits, error correction codes,
detect and repair data corruption.

3. No hi-lo storage: A forgetful data store does not inflate
the stored representation of the data to support its subse-
quent degradation. An example of hi-lo storage is if a sin-
gle image of 1 MB is stored as multiple images that col-
lectively occupy 2 MB, one high-fidelity image at 1MB,
a half fidelity image at 0.5 MB, a quarter fidelity image
at 0.25M and so on; then, the higher fidelity images are
dropped as the store runs low on space.2

4. Negligible pre-processing overhead: The overhead of
pushing data into the store should be negligible compared
to storing data in a conventional store. Thus, a forgetful
data store should store data in its native or near-native
representation.
Forgetfulness is defined this way to reflect our natural

intuition about human memory. This makes using forgetful
storage easier to reason about. In situations where physical
storage is large relative to the amount of stored data, the
model is identical to the conventional one i.e. all data is
stored and may be retrieved perfectly. As the amount of
stored data begins to exceed the available storage space,
fragments of the oldest data are lost. We introduce a forgetful
data structure, the forgit, which supports append and retrieve
operations while satisfying the above four properties. We
implement two proof-of-concept forgits (numerical, image)
and discuss limitations with respect to text forgits.

2. The Forgits
The forgit is a simple data structure that supports infinite
appends and retrievals with the provision that it will forget
older data. It consists of F fidelity levels of circular buffers

2 This scheme is reminiscent of hi-lo pricing strategies where stores inflate
their prices only to bring them down during discounts giving customers the
illusion of a bargain.
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Figure 2. Illustration of the behavior of a numerical forgit
after a series of appends and retrieves. Hexadecimal instead
of binary representation is used for clarity.

Algorithm 1 Append

1: procedure Append(O)
2: N is the number of objects in the forgit
3: N ← N + 1
4: {s1, ..., sF } ← Segment(O , F )
5: for i from 1 to F do
6: bi(N mod size(bi))← si

7: return N

{b1, b2, ...bF } such that 1 ≤ size(bi−1) ≤ size(bi) as illus-
trated in Figure 2.

The forgit supports data types with the following prop-
erty: objects of the data type should be decomposable into F
segments, {s1, s2, ..., sF } such that segment si is appended
to buffer bi and segment si−1 is less significant than seg-
ment si. Each object appended to a forgit returns an index
c to later retrieve the object. This index is simply a counter.
The append procedure is described in algorithm 1.

To retrieve an object with index c, we use the retrieve
procedure described in algorithm 2. Forgits can mimic a
human memory quirk: confabulation. With confabulation
enabled, lower-order segments of a partially forgotten object
are replaced by lower-order segments of more recent data.
When confabulation is disabled, lower-order segments are
zeroed out during retrieval. Thus, the forgit has the following
tunable parameters: (i) maximum size of elements fully or
partially remembered by a forgit by setting the size of buffer
of bF (i) degree of degradation by setting the number of
fidelity levels F and the size of each buffer, (iii) and whether
the structure supports confabulation.

Confabulation could be useful in at least two ways. First,
in the case of aggregate data, zeroing out lower-order seg-
ments of data may actually be less ‘natural’ than sampling
lower-order segments from other data, especially if the data
is drawn from the same overall distribution. So rather than
flattening out the high-frequency data, confabulation gives
an impression of ’realistic’ data drawn from sampling the
low-order segments from the dataset. If, for example, a user

wished to perform computation on the data, confabulation
could give better aggregates and less overall bias. Second,
confabulation could be used take advantage of certain pat-
terns in the data or to provide interesting visual effects. For
example, if a user has a set of images that are clustered in
terms of similarity of the low-order bits (say, patterns or col-
ors), and these clusters are stored in separate forgits the con-
fabulation would fill in details that appear reasonable.

As with conventional storage, forgits may be allocated
with access controls to preserve isolation of user data.

Algorithm 2 Retrieve

1: procedure Retrieve(c : index into forgit)
2: N ← number of objects pushed into forgit
3: for i from 1 to F do
4: if CanConfabulate ||N − c ≤ size(bi) then
5: si ← bi(size(bi) mod c)
6: else
7: si ← ∅
8: return Concatenate (s1, ..., sF )

Different data types have different segment and concate-
nate functions. We illustrate these functions with three data
types: numerical, image, and text illustrating the strengths
and limitations of forgits for each type.

2.1 Numerical Forgit
The natural binary representation of numbers preserves sig-
nificance ordering, i.e. the bits are ordered left to right from
most significant to least significant. This natural ordering is
advantageous when using forgits as no pre-processing is re-
quired to determine which segments of a binary representa-
tion are most significant and hence should be forgotten last.
The segment operation is straightforward: given F fidelity
levels the binary representation of the number is split into
F equal sized segments. For example the two byte number,
1111001110100101 can be split into four segments 1111,
0011, 1010, 0101 where the most significant segment 1111
is placed in buffer b4 and the least significant segment is
placed in b1. Concatenating segments retrieved from the for-
git is also straightforward. Figure 2 illustrates the operation
of a forgit for two byte numbers. Floating point representa-
tions are also amenable to significance ordering by dropping
lower significand bits.

2.2 Image Forgit
Extending the forgit to more complex data types such as
images is also straightforward as long as the data type has
a native representation that preserves significance ordering.
Commonly used compressed image (and other media like
audio and video) formats such as JPEG naturally preserve
significance. To store an image in JPEG form, the image is
first quantized through a discrete cosine transform (DCT).
This converts the image from a pixel-by-pixel representa-
tion into a frequency domain matrix representation: the DCT
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Figure 3. Transforming an image into its JPEG representation with segmentation and forgetfulness illustrated.

coefficient matrix. Since the human eye cannot accurately
distinguish the exact strength of high frequency variations,
image compression is typical achieved by ignoring the high
frequency components of the image (the bottom-right half of
a DCT matrix). The natural significance ordering of coeffi-
cients in the DCT matrix is a zigzag through the matrix start-
ing from the top-left coefficient and ending at the bottom-
right coefficient. The matrix is typically stored as an array
with coefficients ordered in the zigzag order.

The segment operation is to divide the array into F equal
sized segments. The segments from the bottom-right half of
the DCT matrix are least significant and hence are dropped
first. At retrieval, the segments are concatenated back into
one array before being streamed into a JPEG decoder. Fig-
ure 4 illustrates the quality of eight images pushed in a forgit
with four fidelity levels.

Both numerical and media forgits3 satisfy all properties of
forgetfulness. The loss is passive: adding data to the struc-
ture will overwrite older data. The degradation is graceful:
before the data is completely forgotten, its most significant
components can still be retrieved. There is no hi-lo stor-
age: the representation is not expanded before storage and
no copies of the data are made. Finally the overhead of seg-
mentation and concatenation is O(1) and may be further ac-
celerated with hardware assistance.

2.3 Text Forgit
A compelling application for forgetfulness is text communi-
cation whether it is in the form of emails, tweets or chat mes-
sages. Unfortunately data that has no natural significance
ordering such as English sentences, may require both pre-
processing and hi-lo storage to achieve passive and graceful
loss.

3 Note time-series forgits are similar to media forgits as time-series data
can be compressed with a frequency-domain transform [20]. A choice of
whether low or high frequency variations are more significant allows forgits
to select which components of the time-series data to forget first.

We describe two techniques here that can be applied to
text with the caveat that they do not satisfy the two for-
getfulness properties: no hi-lo storage and negligible pre-
processing overhead. Suppose the relative importance of
each word or n-gram is stored in a frequency dictionary [14],
then a sequence of words can be ordered by importance
where uncommon words are the most important and com-
mon words are the least important and are dropped first from
a message. Such a technique engages in hi-lo storage: for
each word we must also store its position in the original text.

Alternatively, we can pre-process the text using auto-
summarizers such as LexRank [7] or TextRank [17] that
construct a graph of the original text where highly ranked
sentences represent the most significant components of the
text. The graph representation naturally fits into a forgit:
nodes with high in-degrees are placed in the highest fidelity
level buffer and hence dropped last. Unfortunately, such a
technique requires significant text pre-processing.

2.4 Encrypted Forgit
Forgits do not natively provide any privacy guarantees. On
public, untrusted cloud stores, it may be useful to encrypt
as well as gradually forget data. Combining forgetfulness
with encryption is straightforward, and can be done by en-
crypting data stored in a forgit at a per-segment level. If
the encryption scheme results in variable ciphertext length,
wasting space could be avoided by re-implementing forgits
using pointers to segments rather than circular buffers. If
stronger timeout guarantees are required on when data must
be forgotten, encrypted segments could be combined with
other privacy preserving schemes such as Vanish [9]. One
drawback of using such a system in conjunction with forgits
would cause expired data to occupy space though it is unre-
coverable until it is overwritten. In these straightforward ap-
plications of security mechanisms the overall security prop-
erties are dictated by the mechanism applied to the forgits
rather than any properties of the forgits themselves. We leave
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the devising of more sophisticated schemes that can produce
stronger guarantees as an area of interest for future work.

3. Related Work
Data privacy and security are rising to the forefront of human
concerns as the information age saturates our social, cul-
tural, and geo-political domains. Cloud computing and ubiq-
uitous computing are rapidly eroding any expectations of
privacy even despite santization efforts through anonymiza-
tion or obfuscation of data [29]. The growing popularity of
ephemeral consumer applications such as Snapchat [26] and
regulatory proposals such as the right to be forgotten [15]
signal resistance to this trend.

3.1 Data Privacy
There are surprisingly few mechanisms designed to achieve
the goal of forgetting data beyond active periodic dele-
tion [13]. Research efforts around ephemeral data typi-
cally focus on guaranteeing the deletion or expiration of
data [9, 19, 28]. Ephemerizer and similar systems [18, 19]
rely on storing the encrypted data on a separate machine
from the key used to decrypt the data. Later systems like
Vanish [9] further extend this idea using distributed hash ta-
bles (DHTs) to store keys and protect against adversaries at-
tempting to access data after timeout. Other recent attempts
to preserve data privacy do so by securing mobile data [27]
or protecting communication channels by erasing all traces
of execution [6].

Unlike these works, we do not propose to offer guarantees
on expiration or destruction of data. Instead, the data struc-
ture for storing data passively implements data loss through
gradual use. We also do not consider adversarial threat mod-
els; if stronger guarantees are required, then active schemes
using encryption may be implemented around the forgit stor-
age primitive or at higher abstraction levels.

3.2 Data Loss
Within computer science, notions related to data loss fre-
quently appear as obstacles to be overcome when comput-
ing limits are encountered (e.g. data loss due to lack of stor-
age space where, as with privacy, the solution is active dele-
tion [13]). However, losses do already occur predictably and
ubiquitously in caching (eviction), (lossy) compression, and

(soft) state. Here, we only describe closely related work to
the techniques we employ, namely, compression and repre-
sentation.

Compression exploits statistical redundancies of data
across space, time, or frequency. Lossy compression schemes
for audio, image, and video data achieve one to two orders
of magnitude greater compression than lossless schemes by
exploiting the fact that reconstructed data does not nec-
essarily need to be identical to the original data. Instead,
only humanly perceptible differences must be preserved,
and thus, encodings that consider variations in human sen-
sitivity to certain frequencies, luminance, and color may be
used (MP3, JPEG, MPEG-4, etc. [3, 4, 21, 30]).

Our forgetful data structures are directly compatible with
data compression schemes whose outputs can be decom-
posed into independent segments ranked by ‘significance’.
Fourier and related signal-frequency transforms have been
widely used since the 1960s [5] and naturally produce this
significance segmentation property after being applied to
signals (time-series data). In the case of images, the discrete
cosine transform (DCT) [2] used in JPEG image compres-
sion are ideally suited for segmentation (Section 2). The idea
of storing images in limited space with lossy rate controlled
compression has also been proposed previously [12].

Though forgits can represent certain data in compressed
form, this is different from a general compression strategy
where data is stored at only one pre-defined level of preci-
sion or fidelity. The benefit being that forgits allow for the
passive reduction in precision through the loss of low order
fragments.

3.3 Approximate Computation
Since the 1970’s, many novel ideas along the lines of fuzzy,
lossy, and approximate computation were proposed, but
compelling applications have been limited to specific tasks
in domains such as media processing, artificial intelligence,
and data encoding, where tolerating minor errors can dras-
tically improve performance [21, 30]. Approximate com-
putation models are related to forgetful data structures in
that both ideas seek to relax accuracy requirements, but for-
getfulness is primarily concerned with storage rather than
computation. Approximate computation using forgetful data
structures may be potentially made faster than normal com-
putation because there is less data to traverse.



In databases, online aggregation was proposed by Heller-
stein et al. to give users real-time feedback and control over
their aggregation queries [11] through the incremental com-
putation of approximate aggregates that improve over time.
Since then, database query approximation systems allow
users to tradeoff query accuracy for response time or energy
usage while providing statistical error guarantees [1, 8, 10,
22, 23]. We allow users to tradeoff the precision of stale data
for storage space reductions. Unlike these works, we do not
explicitly focus on bounding error.

4. Conclusion and Future Work
Forgetful storage directly contravenes the typical reliabil-
ity and durability requirements that systems builders have
come to expect. In this paper, we argue that forgetfulness
can actually be a useful and intuitive property if harnessed
properly. We define forgetfulness as a passive process that
gradually degrades data without inflation or additional over-
heads. We then demonstrate how to implement such a data
structure through the design of a proof of concept, the forgit.
We show through proof-of-concept forgits that forgetful data
structures can produce loss properties useful for different ap-
plications. The design of low-overhead transforms for other
data types and the integration of forgetful data structures
into large-scale high performance systems are challenging
research problems that merit more study.
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